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1. Modeling the Unit Commitment
Problem with Storage

Implement the Unit Commitment problem with storage from the lecture in Julia. Before we start, let’s load
the necessary packages and data.

using JuMP, HiGHS
using CSV
using DataFrames
using CairoMakie
using Dates

# Set up CairoMakie
set_theme!(theme_light())

1.1 Load and Process Data

First, we load the data from the CSV files and process them into dictionaries for easy access.

# Get the directory of the current file
file_directory = "$(@__DIR__)/data"

# Load data
dfGenerators = CSV.read("$file_directory/generator.csv", DataFrame)
dfStorages = CSV.read("$file_directory/storage.csv", DataFrame)
dfWindTurbines = CSV.read("$file_directory/windTurbine.csv", DataFrame)
dfScenarios = CSV.read("$file_directory/scenario.csv", DataFrame)

# Process generator data
dictGenerators = Dict(

row.name => (
min_power = row.min_power,
max_power = row.max_power,
variable_cost = row.variable_cost,
fix_cost = row.fix_cost,
min_up_time = row.min_up_time,
min_down_time = row.min_down_time,
ramp_up = row.ramp_up,
ramp_down = row.ramp_down,
startup_cost = row.startup_cost,
efficiency = row.efficiency

) for row in eachrow(dfGenerators)

1



)

# Process storage data
dictStorages = Dict(

row.name => (
min_power = row.min_power,
max_power = row.max_power,
min_energy = row.min_energy,
max_energy = row.max_energy,
charge_efficiency = row.charge_efficiency,
discharge_efficiency = row.discharge_efficiency,
self_discharge_rate = row.self_discharge_rate,
ramp_up = row.ramp_up,
ramp_down = row.ramp_down

) for row in eachrow(dfStorages)
)

# Process wind turbine data
dictWindTurbines = Dict(

row.name => (
variable_cost = row.variable_cost,

) for row in eachrow(dfWindTurbines)
)

# Process scenario data
date_format = dateformat"yyyy-mm-dd HH:MM:SS"
dictScenarios = Dict()
for scenario in unique(dfScenarios.scenario)

scenario_data = dfScenarios[dfScenarios.scenario .== scenario, :]
dictScenarios[scenario] = (

datetime = DateTime.(scenario_data.datetime, date_format),
demand_forecast = scenario_data.demand_forecast,
wind_forecast = scenario_data.wind_forecast

)
end

1.2 Implement the Unit Commitment Model with Storage

Now, let’s implement the Unit Commitment model with storage. We’ll create a function that takes the data
dictionaries as input and returns the model.

TASK: Fill out the code below where you see ## YOUR CODE HERE to implement the storage in the model.

function solve_unit_commitment(dictGenerators, dictStorages, dictWindTurbines, scenario)
# Create model
model = Model(HiGHS.Optimizer)
set_silent(model)

# Define the time periods and sets
T = 1:length(scenario.datetime) # Time periods (hours)
G = keys(dictGenerators) # Set of thermal generators
S = keys(dictStorages) # Set of storage units
W = keys(dictWindTurbines) # Set of wind turbines
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# Decision Variables
@variable(model, p[g in G, t in T] >= 0) # Power output of generator g at time t
@variable(model, u[g in G, t in T], Bin) # Binary variable for generator status

(1=on, 0=off)↪

@variable(model, v[g in G, t in T], Bin) # Binary variable for startup (1=startup,
0=no startup)↪

@variable(model, p_w[w in W, t in T] >= 0) # Power output of wind at time t
@variable(model, p_fictive[t in T] >= 0) # Fictive power at time t -> used to model

a fictive production in power balance constraint and penalize it with a very high
cost in the objective function in case the scenario is not feasible, i.e. not
enough generation is available to cover the demand

↪

↪

↪

# Storage variables
@variable(model, p_ch[s in S, t in T] >= 0) # Charging power of storage s at time

t↪

@variable(model, p_dis[s in S, t in T] >= 0) # Discharging power of storage s at
time t↪

@variable(model, e[s in S, t in T] >= 0) # Energy level of storage s at time t
@variable(model, u_ch[s in S, t in T], Bin) # Binary variable for charging status

(1=charging, 0=not charging)↪

@variable(model, u_dis[s in S, t in T], Bin) # Binary variable for discharging
status (1=discharging, 0=not discharging)↪

# Objective Function
@objective(model, Min, sum(

dictGenerators[g].variable_cost * p[g,t] + # Variable cost of production
dictGenerators[g].fix_cost * u[g,t] + # Fixed cost of running
dictGenerators[g].startup_cost * v[g,t] # Startup cost of starting the

generator↪

for g in G, t in T
) + sum(

dictWindTurbines[w].variable_cost * p_w[w,t] # Variable cost of wind
production↪

for w in W, t in T
) + sum(

1000 * p_fictive[t] # Cost of fictive production
for t in T

))

# Constraints
# Power balance constraint (including storage): Total generation must equal demand
## YOUR CODE HERE

# Generator limits: Power output must be within min/max when running
@constraint(model, [g in G, t in T],

p[g,t] <= dictGenerators[g].max_power * u[g,t] # Max power when running
)
@constraint(model, [g in G, t in T],

p[g,t] >= dictGenerators[g].min_power * u[g,t] # Min power when running
)
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# Wind limits: Wind power cannot exceed forecast
@constraint(model, [w in W, t in T],

p_w[w,t] <= scenario.wind_forecast[t]
)

# Minimum up time: Generator must stay on for minimum duration after startup
@constraint(model, min_up[g in G, t in T],

sum(u[g,�] for � in max(1, t-dictGenerators[g].min_up_time+1):t) >=
dictGenerators[g].min_up_time * v[g,t]

)

# Minimum down time: Generator must stay off for minimum duration after shutdown
@constraint(model, min_down[g in G, t in T],

sum(1 - u[g,�] for � in max(1, t-dictGenerators[g].min_down_time+1):t) >=
dictGenerators[g].min_down_time * (1 - u[g,t])

)

# Ramp rate limits: Power change between consecutive timesteps/hours is limited
@constraint(model, [g in G, t in 2:length(T)],

p[g,t] - p[g,t-1] <= dictGenerators[g].ramp_up # Max ramp up
)
@constraint(model, [g in G, t in 2:length(T)],

p[g,t-1] - p[g,t] <= dictGenerators[g].ramp_down # Max ramp down
)

# Startup variable definition: v_g[g,t] = 1 if generator g is started at time t
@constraint(model, [g in G, t in 2:length(T)],

v[g,t] >= u[g,t] - u[g,t-1] # v_g = 1 if u_g changes from 0 (t-1) to 1 (t)
)

# Storage constraints
# Energy balance (Tip: start at t=2)
## YOUR CODE HERE

# Energy balance at t=1: Initial energy level (assume empty at start) (Tip: define
the constraint for e[s,t] at t=1)↪

## YOUR CODE HERE

# Energy limits: Energy level must be within min/max
## YOUR CODE HERE

# Power limits and mutual exclusion: Storage power cannot exceed max power when
charging/discharging and charging and discharging cannot happen at the same time↪

## YOUR CODE HERE

# Storage ramp rate limits: Power change between consecutive timesteps/hours is
limited (Tip: define the constraints starting at t=2)↪
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# Solve the model
optimize!(model)

# Assert that the solution is feasible
if termination_status(model) != MOI.OPTIMAL

ts = termination_status(model)
@info "Optimization finished. The model was not solved correctly. Termination

Status: $ts"↪

# Helpful resource: https://jump.dev/JuMP.jl/stable/manual/solutions/#Conflicts
end

# Return results
return (

p_g = value.(p), # Generator power output
p_w = value.(p_w), # Wind power output
u_g = value.(u), # Generator status
v_g = value.(v), # Startup events
p_ch = value.(p_ch), # Storage charging power
p_dis = value.(p_dis),# Storage discharging power
e = value.(e), # Storage energy level
total_cost = objective_value(model)

)
end

1.3 Solve and Analyze Results

Now, let’s solve the model and analyze the results with simple plotting.

# Create a dataframe to store results
results_df = DataFrame(

scenario = String[], # Scenario identifier
datetime = DateTime[], # Timestamp
total_cost = Float64[], # Total system cost
wind_curtailment = Float64[], # Curtailed wind power
thermal_generation = Float64[], # Total thermal generation
wind_generation = Float64[], # Total wind generation
storage_charge = Float64[], # Storage charging power
storage_discharge = Float64[], # Storage discharging power
storage_energy = Float64[] # Storage energy level

)

# Loop over scenarios
for (scenario_name, scenario_data) in dictScenarios

solution = solve_unit_commitment(dictGenerators, dictStorages, dictWindTurbines,
scenario_data)↪

# Store results for each time period
for t in 1:length(scenario_data.datetime)

push!(results_df, (
scenario_name,
scenario_data.datetime[t],
solution.total_cost,
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sum(scenario_data.wind_forecast[t] - solution.p_w[w,t] for w in
keys(dictWindTurbines)),↪

sum(solution.p_g[g,t] for g in keys(dictGenerators)),
sum(solution.p_w[w,t] for w in keys(dictWindTurbines)),
sum(solution.p_ch[s,t] for s in keys(dictStorages)),
sum(solution.p_dis[s,t] for s in keys(dictStorages)),
sum(solution.e[s,t] for s in keys(dictStorages))

))
end

end

# Plot generation over time for each scenario
for (scenario_name, scenario_data) in dictScenarios

# Create figure with subplots
fig = Figure(size=(1000, 800))

# Format datetime to show only hours
hours = hour.(results_df.datetime)

# Generation profile
ax1 = Axis(fig[1, 1], xlabel="Hour of Day", ylabel="Power [MW]")
lines!(ax1, hours, results_df.thermal_generation, label="Thermal Generation")
lines!(ax1, hours, results_df.wind_generation, label="Wind Generation")
lines!(ax1, hours, results_df.wind_curtailment, label="Wind Curtailment")
lines!(ax1, hours, scenario_data.wind_forecast, label="Wind Forecast")
lines!(ax1, hours, scenario_data.demand_forecast, label="Demand")
axislegend(ax1)
ax1.title = "Generation Profile for Scenario $scenario_name"

# Storage energy level
ax2 = Axis(fig[1, 2], xlabel="Hour of Day", ylabel="Energy [MWh]")
lines!(ax2, hours, results_df.storage_energy, label="Energy Level")
axislegend(ax2)
ax2.title = "Storage Energy Level for Scenario $scenario_name"

# Storage power
ax3 = Axis(fig[2, 1], xlabel="Hour of Day", ylabel="Power [MW]")
lines!(ax3, hours, results_df.storage_charge, label="Charging")
lines!(ax3, hours, results_df.storage_discharge, label="Discharging")
axislegend(ax3)
ax3.title = "Storage Power for Scenario $scenario_name"

# Display the figure
display(fig)

end

1.4 Verify Results

# Test your answer
# Check objective value / total cost is in the correct range
@assert isapprox(results_df.total_cost[1], 1.156e6, atol=1e4) "The total cost for

scenario S1 should be 1.156e6 but is $(results_df.total_cost[1])"↪
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println("Excellent work! You've successfully implemented the storage model and solved the
optimization problem.")↪
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Solutions

You will likely find solutions to most exercises online. However, I strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don’t hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the
lower right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or
Claude to explain them to you. But please remember, the goal is not just to complete the exercises, but to
understand the concepts and improve your programming abilities.

8


	1. Modeling the Unit Commitment Problem with Storage
	1.1 Load and Process Data
	1.2 Implement the Unit Commitment Model with Storage
	1.3 Solve and Analyze Results
	1.4 Verify Results

	Solutions

