Tutorial VI - Unit Commitment Problem
Energy System Optimization with Julia

1. Modelling the Unit Commitment
Problem

Implement the Unit Commitment problem from the lecture in Julia. Before we start, let’s load the necessary
packages and data.

using JuMP, HiGHS
using CSV

using DataFrames
using Plots

using Dates

Now, let’s load the data. The generator data includes additional parameters for UC, and the scenario data
now includes timestamps and hourly values.

Get the directory of the current file
file_directory = "$(@__DIR__)/data"

Load the data of the thermal generators

generators = CSV.read("$file_directory/generator.csv", DataFrame)
println("Number of generators: $(nrow(generators))")
println("First 5 rows of available generators:")
println(generators[1:5, :])

Number of generators: 6
First 5 rows of available generators:
5x10 DataFrame

Row name min_power max_power variable_cost fix_cost min_up_time mi
String3 Int64 Int64 Int64 Int64 Int64 In

1 G1 100 500 50 1000 4

2 G2 50 350 60 1200 2

3 G3 40 250 55 1300 1

4 G4 30 200 70 1500 4

5 Gb 30 200 60 1500 4

4 columns omitted

Load the data of the wind turbines

windTurbines = CSV.read("$file_directory/windTurbine.csv", DataFrame)
println("Number of wind turbines: $(nrow(windTurbines))")
println("Variable cost per wind turbine:")

println(windTurbines)

Number of wind turbines: 1

Variable cost per wind turbine:

1x2 DataFrame

Row name variable_cost
String3 Int64

1 T1 50

Load the scenario data about the demand and wind forecast
scenarios = CSV.read("$file_directory/scenario.csv", DataFrame)
println("First 5 rows of scenarios:")

println(scenarios[1:5, :])

println("Loaded scenarios:")

println(Vector{String}(unique (scenarios.scenario)))

First 5 rows of scenarios:
5x4 DataFrame

Row scenario datetime demand_forecast wind_forecast
String3 String31 Int64 Int64

1 sS1 2024-01-01 00:00:00 800 200
2 S1 2024-01-01 01:00:00 750 180
3 S1 2024-01-01 02:00:00 700 150
4 3S1 2024-01-01 03:00:00 650 120
5 81 2024-01-01 04:00:00 600 100

Loaded scenarios:

["s1"]

Next, prepare the data structures for the model. We'll create NamedTuples for generators, wind turbines,
and scenarios:

This function creates the Named Tuple ThermalGenerator

It stores all parameters needed for a thermal generator in the UC problem:

- min/max: minimum and maximum power output

- fixed_cost: cost per hour when the generator is running

- variable_cost: cost per MWh of power produced

- min_up_time: minimum number of hours the generator must stay on once started
- min_down_time: minimum number of hours the generator must stay off once shut down
- ramp_up/down: maximum power change between consecutive hours

- startup_cost: one-time cost when starting the generator

function ThermalGenerator(

min: :Int64,

max::Int64,

fixed_cost::Int64,

variable_cost::Int64,

min_up_time: :Int64,

min_down_time: :Int64,

ramp_up: :Int64,

ramp_down: :Int64,

startup_cost::Int64

HOH H H H H H HEH

return (
min = min,
max = max,
fixed_cost = fixed_cost,
variable_cost = variable_cost,

end

min_up_time = min_up_time,
min_down_time = min_down_time,
ramp_up = ramp_up,

ramp_down = ramp_down,
startup_cost = startup_cost

Create dictionaries for the data
Each generator's parameters are stored in a NamedTuple for easy access
dictThermalGenerators = Dict(row.name => ThermalGenerator(

row.min_power, row.max_power, row.fix_cost, row.variable_cost,
row.min_up_time, row.min_down_time, row.ramp_up, row.ramp_down,
row.startup_cost

) for row in eachrow(generators))

Create dictionary for wind turbines

Wind turbines only have variable costs as they don't have startup/shutdown constraints
dictWindTurbines = Dict(row.name => (variable_cost = row.variable_cost,) for row in

o

eachrow(windTurbines))

Create dictionary for scenarios

Each scenario contains time series data for demand and wind forecasts
date_format = dateformat'"yyyy-mm-dd HH:MM:SS"

dictScenarios = Dict()

for

end

scenario in unique(scenarios.scenario)

scenario_data = scenarios[scenarios.scenario .== scenario, :]

dictScenarios[scenario] = (
datetime = DateTime.(scenario_data.datetime, date_format),
demand_forecast = scenario_data.demand_forecast,
wind_forecast = scenario_data.wind_forecast

2. Implementing Startup Variables and
Costs

In the Unit Commitment problem, we need to track when generators are started up, as this incurs additional
costs. This aspect was not covered in detail in the lecture, so let’'s implement it here.

Task: Implement Startup Variables and Costs

1. We need to add a binary variable v_g[g,t] that equals 1 if generator g is started up at time t, and 0
otherwise.

2. The startup cost should be included in the objective function.

3. We need to link the startup variable to the generator status variable u_g[g,t].

The relationship between v_g and u_g is: If a generator is off att-1 (u_g[g,t-1] = 0)andonatt (u_glg,t]
= 1), then it must have been started up (v_glg,t] = 1).

How can this be expressed?

YOUR ANSWER HERE

Now, let’s implement the Unit Commitment model in a function:

function solve unit_commitment(dictThermalGenerators: :Dict, dictWindTurbines: :Dict,
< scenario)

Create the model

model = Model (HiGHS.Optimizer)

set_silent (model)

Define the time periods and sets
1:length(scenario.datetime) # Time periods (hours)

= keys(dictThermalGenerators) # Set of thermal generators
= keys(dictWindTurbines) # Set of wind turbines

= Q0 A
|

Define variables

@variable(model, p_glg in G, t in T] >= 0) # Power output of generators [MW]
@variable(model, p_wlw in W, t in T] >= 0) # Power output of wind turbines [MW]
@variable(model, u_gl[g in G, t in T], Bin) # Binary variable for generator status

~ (1=on, O=off)

@variable(model, v_gl[g in G, t in T], Bin) # Binary variable for startup (l=startup,
< O=no startup)

ot

Objective function: Minimize total costs

end

Costs include:

1. Variable costs for power production

2. Fixed costs when generator is running

3. Startup costs when generator is started
4. Variable costs for wind power

YOUR CODE HERE

Power balance constraint: Total generation must equal demand
YOUR CODE HERE

Generator limits: Power output must be within min/max when running
YOUR CODE HERE

Wind limits: Wind power cannot exceed forecast
YOUR CODE HERE

Minimum up time: Generator must stay on for minimum duration after startup
Tip: Use the startup variable v_g to enforce the minimum up time
YOUR CODE HERE

Minimum down time: Generator must stay off for minimum duration after shutdown
Tip: Use the startup variable v_g to enforce the minimum down time
YOUR CODE HERE

Ramp rate limits: Power change between consecutive hours is limited
YOUR CODE HERE

Startup variable definition: v_gl[g,t] = 1 if generator g is started at time t
YOUR CODE HERE

Solve the model
optimize! (model)

Return results

return (
p_g = value.(p_g), # Generator power output
p_w = value.(p_w), # Wind power output
u_g = value. (u_g), # Generator status
v_g = value.(v_g), # Startup events

total_cost = objective_value(model)

Now, let's solve the model for all scenarios and store the results:

Create a dataframe to store results
results_df = DataFrame(

scenario = Stringl[], # Scenario identifier
datetime = DateTimel[], # Timestamp

total_cost = Float64[], # Total system cost
wind_curtailment = Float64[], # Curtailed wind power
thermal_generation = Float64[], # Total thermal generation
wind_generation = Float64[] # Total wind generation

Loop over scenarios
for (scenario_name, scenario_data) in dictScenarios

solution = solve_unit_commitment (dictThermalGenerators, dictWindTurbines,
< scenario_data)

Store results for each time period
for t in 1:length(scenario_data.datetime)
push! (results_df, (
scenario_name,
scenario_data.datetime[t],
solution.total_cost,
sum(scenario_data.wind_forecast[t] - solution.p_wl[w,t] for w in
< keys(dictWindTurbines)),
sum(solution.p_glg,t] for g in keys(dictThermalGenerators)),
sum(solution.p_wlw,t] for w in keys(dictWindTurbines))
)
end
end

Finally, let’s plot the results:

We only have one scenario, so we can plot the results for that scenario like this:

Format datetime to show only hours
hours = hour. (results_df.datetime)

Plot generation over time
plot(hours, results_df.thermal_generation,
label="Thermal Generation", xlabel="Time", ylabel="Power [MW]")
plot! (hours, results_df.wind_generation,
label="Wind Generation")
plot! (hours, results_df.wind_curtailment,
label="Wind Curtailment")
title! ("Generation Profile")

Assert the correct objective value

Test your answer

Assert the correct objective value

result_cost = results_df [results_df.scenario .== "S1", :total_cost][1]

@assert isapprox(result_cost, 1.1446e6; atol=1e4) "Objective value from results_df is not
< correct. Check your implementation."

println("Test passed: The objective value from results_df is correct!")

Solutions

You will likely find solutions to most exercises online. However, | strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don't hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the
lower right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or
Claude to explain them to you. But please remember, the goal is not just to complete the exercises, but to
understand the concepts and improve your programming abilities.

	1. Modelling the Unit Commitment Problem
	2. Implementing Startup Variables and Costs
	Task: Implement Startup Variables and Costs
	Now, let's solve the model for all scenarios and store the results:
	Finally, let's plot the results:
	Assert the correct objective value

	Solutions

