Tutorial V - Economic Dispatch Problem
Energy System Optimization with Julia

1. Modelling the ED problem

Implement the ED problem from the lecture in Julia. Before we start, let's load the necessary packages and
data.

using JuMP, HiGHS
using CSV

using DataFrames
using Plots

@ Tip

If you haven't installed the packages yet, you can do so by running using Pkg first and
then Pkg.add("JuMP"), Pkg.add("HiGHS"), Pkg.add("DataFrames"), Pkg.add("Plots"), and
Pkg.add ("StatsPlots").

Now, let's load the data. The generator data (p;"™, pi"®*, c4", 1™, cJ™ being fixed cost not used in the ED,
the wind data (c2%"), and the scenario data (p{,, /) are provided as CSV files.

Get the directory of the current file
file_directory = "$(@__DIR__)/data"

Load the data of the thermal generators

generators = CSV.read("$file_directory/generator.csv", DataFrame)
println("Number of generator: $(nrow(generators))")
println("First 5 rows of available genrator:")
println(generators[1:5, :])

Number of generator: 6
First 5 rows of available genrator:
5x5 DataFrame

Row name min_power max_power variable_cost fix_cost
String3 Int64 Int64 Int64 Int64

1 G1 100 500 50 1000

2 G2 50 350 60 1200

3 G3 40 250 55 1300

4 G4 30 200 70 1500

5 Gb 30 200 60 1500

Load the data of the wind turbines

windTurbines = CSV.read("$file_directory/windTurbine.csv", DataFrame)
println("Number of wind turbines: $(nrow(windTurbines))")
println("Variable cost per wind turbine:")

println(windTurbines)

Number of wind turbines: 1

Variable cost per wind turbine:

1x2 DataFrame

Row name var_cost
String3 Int64

1 T1 50

Load the sceanrio data about the demand and wind forecast
scenarios = CSV.read("$file_directory/scenario.csv", DataFrame)
println("First 5 rows of sceanios:")

println(scenarios[1:5, :])

First 5 rows of sceanios:
5x3 DataFrame

Row name wind_forecast demand_forecast
String3 Int64 Int64

1 S1 1000 1500

2 82 1000 1600

3 S3 1000 1400

4 sS4 1000 1300

5 85 1000 1000

Next, you need to prepare the given data for the model. We will use ‘function’ to create a ‘Named Tuple’ which
we can access with the dot notation:

This function creates the Named Tuple ThermalGenerator
function ThermalGenerator(

min: :Int64,

max: :Int64,

fixed_cost::Int64,

variable_cost::Int64,

)
return (
min = min,
max = max,
fixed_cost = fixed_cost,
variable_cost = variable_cost,
)
end

Add generators of the data to a dictionary of the generators
dictThermalGeneartors = Dict(row.name => ThermalGenerator(row.min_power, row.max_power,
» row.fix_cost, row.variable_cost) for row in eachrow(generators))

Now a generator propety can be accessed
println(dictThermalGeneartors["G1"] .variable_cost)

Analogously create a dictionary for the wind turbines and scenarios. Call them dictWindTurbines and
dictScenarios.

YOUR CODE BELOW

Validate your solution

Qassert length(dictThermalGeneartors) == nrow(generators) "Available time dictionary

-~ should have same length as input data"

Q@assert length(dictWindTurbines) == nrow(windTurbines) "Available time dictionary should
-~ have same length as input data"

@assert length(dictScenarios) == nrow(scenarios) "Scenario dictionary should have same

- length as input data"

Check that all values are positive

@assert all(v -> all(x -> x >= 0, [v.min, v.max, v.fixed_cost, v.variable_cost]),

o values(dictThermalGeneartors)) "All thermal generator values must be positive"
Q@assert all(v -> v.variable_cost >= 0, values(dictWindTurbines)) "All wind turbine values
< must be positive"
@assert all(v -> all(x -> x >= 0, [v.wind_forecast, v.demand_forecast]),

o values(dictScenarios)) "All scenario values must be positive"

Check that dictionaries contain all expected keys

@assert all(p —-> haskey(dictThermalGeneartors, p), generators.name) "Missing names in

- dictionary"

@assert all(b -> haskey(dictWindTurbines, b), windTurbines.name) "Missing names in

- dictionary"

@assert all(b -> haskey(dictScenarios, b), scenarios.name) "Missing names in dictionary"

Next, we define the model instance for the ED problem.
Prepare the model instance

dispatchModel = Model (HiGHS.Optimizer)

Now, create your variables. Please name them p_g for the power output of generators, p_w for the power
injection of wind turbines.

i Note

Consider the bounds for these variables. First, we only want to solve the model for sceanrio “S1".

YOUR CODE BELOW

Validate your solution

Check variable dimensions

@assert length(p_g) == length(dictThermalGeneartors) "Incorrect dimensions for p_g"
Qassert length(p_w) == length(dictWindTurbines) "Incorrect dimensions for p_w"

Check variable types
@assert all(x -> is_valid(dispatchModel, x), p_g) "p_g must be valid variables"
@assert all(x -> is_valid(dispatchModel, x), p_w) "p_w must be valid variables"

Next, define the objective function.
YOUR CODE BELOW

Validate your solution

Check if the model has an objective

Q@assert objective_function(dispatchModel) !== nothing "Model must have an objective
-~ function"

Check if it's a minimization problem
Q@assert objective_sense(dispatchModel) == MOI.MIN_SENSE "Objective should be
< minimization"

Check if the objective function contains both cost components
obj_expr = objective_function(dispatchModel)
Q@assert contains(string(dispatchModel), "p_g") "Objective must include variable costs

as (p_g)]
Q@assert contains(string(dispatchModel), "p_w") "Objective must include variable costs

. (p_w) "

Now, we need to define all necessary constraints for the model, which is only the demand/production bal-
ance constraint as we considered min and max power limitations in the variable setup.

YOUR CODE BELOW

Finally, implement the solve statement for your model instance and print the results.
YOUR CODE BELOW

Validate your solution
Q@assert objective_value(dispatchModel) == 76600 "Objective value should be 76600"

2. Solving scenarios of the ED problem

We now want to solve all sceanrios. To do so we wrap the model in a function that we then can call with
different inputs.

i Note

Copy your model into the function. The results should be stored in the dataframe.

Create a function “solve_economic_dispatch™, which solves the economic
dispatch problem for a given set of input parameters.

function solve_economic_dispatch(dictThermalGeneartors: :Dict, dictWindTurbines::Dict,
- scenario)

Define the economic dispatch (ED) model

dispatchModel = Model (HiGHS.Optimizer)

set_silent (dispatchModel)

Define decision variables

p_g power output of generators

YOUR CODE BELOW

p_w wind power injection
YOUR CODE BELOW

Define the objective function
YOUR CODE BELOW

Define the power balance constraint
YOUR CODE BELOW

Solve statement
optimize! (dispatchModel)
assert_is_solved_and_feasible(dispatchModel)

return the optimal value of the objective function and variables
return (
p_g = value.(p_g),
p_w = value.(p_w),
wind_curtailment = scenario.wind_forecast - sum(value.(p_w)),
total_cost = objective_value(dispatchModel),

end

Create a dataframe to store results
results_df = DataFrame(
scenario = Stringl[],
total_cost = Float64[],
wind_curtailment = Float64[]

Loop over the scenarios and save the results to a dataframe
for (scenario_name, scenario_data) in dictScenarios
solution = solve_economic_dispatch(dictThermalGeneartors, dictWindTurbines,
<, scenario_data)
push! (results_df, (scenario_name, solution.total_cost, solution.wind_curtailment))
end

Print the dataframe
println("\nResults for all scenarios:")
println(results_df)

What is the problem in scenario “S5” with the assumptions made in the ED problem leading to an inefficient
usage of wind turbines?

YOUR ANSWER HERE

Solutions

You will likely find solutions to most exercises online. However, | strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don't hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the
lower right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or
Claude to explain them to you. But please remember, the goal is not just to complete the exercises, but to
understand the concepts and improve your programming abilities.

	1. Modelling the ED problem
	2. Solving scenarios of the ED problem
	Solutions

