
Tutorial III.III - DataFrames in Julia
Energy System Optimization with Julia

Introduction

Imagine aDataFrame as a digital spreadsheet. It’s away to organize andworkwith data in rows and columns.
Each column can hold different types of information, like names, ages, or salaries. In this tutorial, we’ll learn
how to create DataFrames, add and change data, and perform simple operations on our data.

Note

Before we start, make sure you have the DataFrames package installed. If you’re not sure how to do
this, check the previous tutorial on package management!

Let’s begin by importing the DataFrames package:

Import the DataFrames package
using DataFrames

1

Section 1 - Creating DataFrames

ADataFrame in Julia is akin to a table in SQL or a spreadsheet - each column can have its own type, making it
highly versatile. A DataFrame can be created using the DataFrame constructor and passing key-value pairs
where the key is the column name and the value is an array of data. For more help, use ? in the REPL and
type DataFrame. Example:

students = DataFrame(
Name = ["Elio", "Bob", "Yola"],
Age = [18, 25,29],

)

Name Age
String Int64

1 Elio 18
2 Bob 25
3 Yola 29

Exercise 1.1 - Create a DataFrame

Create and Test a DataFrame. Create a DataFrame named employees with the columns Name, Age, and
Salary, and populate it with the specified data: John is 28 years old and earns 50000, Mike is 23 years old
and earns 62000. Frank is 37 years old and earns 90000.

YOUR CODE BELOW

Test your answer
@assert employees == DataFrame(

Name = ["John", "Mike", "Frank"],
Age = [28, 23, 37],
Salary = [50000, 62000, 90000]

)
println("DataFrame created successfully!")
println(employees)

Tip

Remember, for more help, use ? in the REPL and type DataFrame.

2

Section 2 - Accessing and Modifying Data

Accessing columns in a DataFrame can be done using the dot syntax, while rows can be accessed via in-
dexing. Modification of data is straightforward; just assign a new value to the desired cell. To access the
column ‘name’ in our DataFrame with employees, we could do:

employees.Name

3-element Vector{String}:
"John"
"Mike"
"Frank"

To access the third name specifically, we could do:

employees.Name[3]

"Frank"

Exercise 2.1 - Access the Age Column

Access the Age column from the DataFrame and save it in a new variable ages.

YOUR CODE BELOW

Test your answer
@assert ages == [28, 23, 37]
println("Correct, the Ages column is: ", ages)

Exercise 2.2 - Update John’s Salary

Update John’s salary to 59000.

YOUR CODE BELOW

Test your answer
@assert employees.Salary[1] == 59000
println("Modified DataFrame: ")
println(employees)

3

Section 3 - Filtering Data

Logical indexing can be used to filter rows in a DataFrame based on conditions. To filter the DataFrame to
include only employees names “Frank” we could do:

allFranks = employees[employees.Name .== "Frank", :]

Name Age Salary
String Int64 Int64

1 Frank 37 90000

Alternatively, the filter function provides a powerful tool to extract subsets of data based on a condition:

allFranks = filter(row -> row.Name == "Frank", employees)

Name Age Salary
String Int64 Int64

1 Frank 37 90000

Exercise 3.1 - Filter the DataFrame

Filter the DataFrame to include only employees with salaries above 60000. Save the resulting employees in
the DataFrame high_earners.

YOUR CODE BELOW

Test your answer
@assert nrow(high_earners) == 2
println("High earners: ")
println(high_earners)

4

Section 4 - Basic Data Manipulation

Julia provides functions for basic data manipulation tasks, including sorting, grouping, and joining
DataFrames. The sort function can be used to order the rows in a DataFrame based on the values in one
or more columns. To see how to use the function, type ? into the REPL (terminal) and type sort.

Exercise 4.1 - Sort the DataFrame

Sort the DataFrame based on the Age column and save it as sorted_df.

YOUR CODE BELOW

Test your answer
@assert sorted_df.Age[1] == 23
println("DataFrame sorted by age: ")
println(sorted_df)

Tip

If you have more complicated data structures, take a look at JSON files which can be used to work
with all kind of differently structured data sets.

5

Section 5 - Loop over DataFrames

Sometimes, you might need to iterate over the rows of a DataFrame to perform operations on each row
individually. Julia provides a convenient way to do this using the eachrow function. For example, if we want
to check for each employee if they have a salary above 60000, we can do the following:

for row in eachrow(employees)
if row.Salary > 60000

println("$(row.Name) earns more than 60000")
end

end

Mike earns more than 60000
Frank earns more than 60000

Here, the row holds all the values of the row as a NamedTuple. We can access the values of a column then
by using the dot syntax. To create a new column, we can use the push! function. For example, to create a
new column called VacationDays in the employees DataFrame, we can do one of the following:

employees.VacationDays = [0 for row in eachrow(employees)]
employees.VacationDays .= 0

3-element Vector{Int64}:
0
0
0

Exercise 5.1 - Loop over DataFrame

Create a new column called Bonus in the employees DataFrame. The bonus should be calculated as 10% of
the salary for employees over 30, and 5% for those 30 and under. Use a loop to iterate over the rows and
calculate the bonus.

YOUR CODE BELOW

Test your answer
@assert filter(

row -> row.Bonus == 2950,
employees

).Name == ["John"] "John should have a bonus of 2950"
@assert filter(

row -> row.Bonus == 3100,
employees

).Name == ["Mike"] "Mike should have a bonus of 3100"
@assert filter(

6

row -> row.Bonus == 9000,
employees

).Name == ["Frank"] "Frank should have a bonus of 9000"
println("Great job! All the bonuses are correct!")

7

Section 6 - Filling a new DataFrame with
values

Do you remember the push! function? We can use it to fill a new DataFrame with values. For example, we
can create a new DataFrame called WorkingHours and fill it with the values from the employees DataFrame.
Imagine that the company has a policy, where employees above 30 work 30 hours a week, and employees
under 30 work 40 hours a week:

Create a new DataFrame
WorkingHours = DataFrame(

Name = String[],
Hours = Int[]

)
Loop over the rows of the employees DataFrame
for row in eachrow(employees)

if row.Age < 30
push!(WorkingHours, (

Name = row.Name,
Hours = 40

))
else

push!(WorkingHours, (
Name = row.Name,
Hours = 30

))
end

end
println(WorkingHours)

3×2 DataFrame
Row � Name Hours

� String Int64
���������������������

1 � John 40
2 � Mike 40
3 � Frank 30

8

Conclusion

Fantastic work! You’ve completed the tutorial on DataFrames in Julia. You’ve seen how to create
DataFrames and access, modify and filter data. Continue to the next file to learn more.

9

Solutions

You will likely find solutions to most exercises online. However, I strongly encourage you to work on these
exercises independently without searching explicitly for the exact answers to the exercises. Understanding
someone else’s solution is very different from developing your own. Use the lecture notes and try to solve
the exercises on your own. This approach will significantly enhance your learning and problem-solving skills.

Remember, the goal is not just to complete the exercises, but to understand the concepts and improve your
programming abilities. If you encounter difficulties, review the lecture materials, experiment with different
approaches, and don’t hesitate to ask for clarification during class discussions.

Later, you will find the solutions to these exercises online in the associated GitHub repository, but we will
also quickly go over them in next week’s tutorial. To access the solutions, click on the Github button on the
lower right and search for the folder with today’s lecture and tutorial. Alternatively, you can ask ChatGPT or
Claude to explain them to you. But please remember, the goal is not just to complete the exercises, but to
understand the concepts and improve your programming abilities.

10

	Introduction
	Section 1 - Creating DataFrames
	Exercise 1.1 - Create a DataFrame

	Section 2 - Accessing and Modifying Data
	Exercise 2.1 - Access the Age Column
	Exercise 2.2 - Update John's Salary

	Section 3 - Filtering Data
	Exercise 3.1 - Filter the DataFrame

	Section 4 - Basic Data Manipulation
	Exercise 4.1 - Sort the DataFrame

	Section 5 - Loop over DataFrames
	Exercise 5.1 - Loop over DataFrame

	Section 6 - Filling a new DataFrame with values
	Conclusion
	Solutions

